系统城装机大师 - 固镇县祥瑞电脑科技销售部宣传站!

当前位置:首页 > 脚本中心 > python > 详细页面

解决torch.autograd.backward中的参数问题

时间:2020-01-07来源:系统城作者:电脑系统城

torch.autograd.backward(variables, grad_variables=None, retain_graph=None, create_graph=False)

给定图的叶子节点variables, 计算图中变量的梯度和。 计算图可以通过链式法则求导。如果variables中的任何一个variable是 非标量(non-scalar)的,且requires_grad=True。那么此函数需要指定grad_variables,它的长度应该和variables的长度匹配,里面保存了相关variable的梯度(对于不需要gradient tensor的variable,None是可取的)。

此函数累积leaf variables计算的梯度。你可能需要在调用此函数之前将leaf variable的梯度置零。

参数:

variables(变量的序列) - 被求微分的叶子节点,即 ys 。

grad_variables((张量,变量)的序列或无) - 对应variable的梯度。仅当variable不是标量且需要求梯度的时候使用。

retain_graph(bool,可选) - 如果为False,则用于释放计算grad的图。请注意,在几乎所有情况下,没有必要将此选项设置为True,通常可以以更有效的方式解决。默认值为create_graph的值。

create_graph(bool,可选) - 如果为True,则将构造派生图,允许计算更高阶的派生产品。默认为False。

我这里举一个官方的例子


 
  1. import torch
  2. from torch.autograd import Variable
  3. x = Variable(torch.ones(2, 2), requires_grad=True)
  4. y = x + 2
  5. z = y * y * 3
  6. out = z.mean()
  7. out.backward()#这里是默认情况,相当于out.backward(torch.Tensor([1.0]))
  8. print(x.grad)

输出结果是


 
  1. Variable containing:
  2. 4.5000 4.5000
  3. 4.5000 4.5000
  4. [torch.FloatTensor of size 2x2]

接着我们继续


 
  1. x = torch.randn(3)
  2. x = Variable(x, requires_grad=True)
  3.  
  4. y = x * 2
  5. while y.data.norm() < 1000:
  6. y = y * 2
  7.  
  8. gradients = torch.FloatTensor([0.1, 1.0, 0.0001])
  9. y.backward(gradients)
  10. print(x.grad)

输出结果是


 
  1. Variable containing:
  2. 204.8000
  3. 2048.0000
  4. 0.2048
  5. [torch.FloatTensor of size 3]

这里这个gradients为什么要是[0.1, 1.0, 0.0001]?

如果输出的多个loss权重不同的话,例如有三个loss,一个是x loss,一个是y loss,一个是class loss。那么很明显的不可能所有loss对结果影响程度都一样,他们之间应该有一个比例。那么比例这里指的就是[0.1, 1.0, 0.0001],这个问题中的loss对应的就是上面说的y,那么这里的输出就很好理解了dy/dx=0.1*dy1/dx+1.0*dy2/dx+0.0001*dy3/dx。

如有问题,希望大家指正,谢谢_!

以上这篇解决torch.autograd.backward中的参数问题就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

分享到:

相关信息

系统教程栏目

栏目热门教程

人气教程排行

站长推荐

热门系统下载