系统城装机大师 - 固镇县祥瑞电脑科技销售部宣传站!

当前位置:首页 > 数据库 > Redis > 详细页面

Redis分布式缓存与秒杀

时间:2023-11-01来源:系统城装机大师作者:佚名

一、单点Redis的问题

1、数据丢失问题

Redis数据持久化。

2、并发能力问题

大家主从集群,实现读写分离。

3、故障恢复问题

利用Redis哨兵,实现健康检测和自动恢复。

4、存储能力问题

搭建分片集群,利用插槽机制实现动态扩容。

二、RDB

RDB全称Redis Database Backup file(Redis数据备份文件),也被叫做Redis数据快照。简单来说就是把内存中的所有数据都记录到磁盘中。当Redis实例故障重启后,从磁盘读取快照文件,恢复数据。
快照文件称为RDB文件,默认是保存在当前运行目录。

Redis内部有触发RDB的机制,可以在redis.conf文件中找到,格式如下:

bgsave开始时会fork主进程得到子进程,子进程共享主进程的内存数据。完成fork后读取内存数据并写入 RDB 文件。

fork采用的是copy-on-write技术:

  • 当主进程执行读操作时,访问共享内存;
  • 当主进程执行写操作时,则会拷贝一份数据,执行写操作;

RDB方式bgsave的基本流程?

  1. fork主进程得到一个子进程,共享内存空间;
  2. 子进程读取内存数据并写入新的RDB文件;
  3. 用新RDB文件替换旧的RDB文件;

RDB会在什么时候执行?save 60 1000代表什么含义?

  • 默认是服务停止时;
  • 代表60秒内至少执行1000次修改则触发RDB;

RDB的缺点?

  • RDB执行间隔时间长,两次RDB之间写入数据有丢失的风险;
  • fork子进程、压缩、写出RDB文件都比较耗时;

AOF的命令记录的频率也可以通过redis.conf文件来配:

三、AOF

AOF全称为Append Only File(追加文件)。Redis处理的每一个写命令都会记录在AOF文件,可以看做是命令日志文件。

AOF默认是关闭的,需要修改redis.conf配置文件来开启AOF:

AOF的命令记录的频率也可以通过redis.conf文件来配:

配置项 刷盘时机 优点 缺点
Always 同步刷盘 可靠性高,几乎不丢数据 性能影响大
everysec 每秒刷盘 性能适中 最多丢失一分钟的数据
no 操作系统控制 性能最好 可靠性较差,可能丢失大量数据

 因为是记录命令,AOF文件会比RDB文件大的多。而且AOF会记录对同一个key的多次写操作,但只有最后一次写操作才有意义。通过执行bgrewriteaof命令,可以让AOF文件执行重写功能,用最少的命令达到相同效果。

1
2
3
4
5
6
7
set id 1
set name nezha
set id 2
 
bgrewriteaof
 
mset name nezha id 2

Redis也会在触发阈值时自动去重写AOF文件。阈值也可以在redis.conf中配置:

# AOF文件比上次文件 增长超过多少百分比则触发重写auto-aof-rewrite-percentage 100# AOF文件体积最小多大以上才触发重写 auto-aof-rewrite-min-size 64mb 

 RDB和AOF各有自己的优缺点,如果对数据安全性要求较高,在实际开发中往往会结合两者来使用。

  RDB AOF
持久化方式 定时对整个内存做快照 记录每一次执行的命令
数据完整性 不完整,两次备份之间会丢失 相对完整,取决于刷盘策略
文件大小 会有压缩,文件体积小 记录命令,文件体积很大
宕机恢复速度 很快
数据恢复优先级 低,因为数据完整性不低 高,因为数据完整性更高
系统资源占用 高,大量CPU和内存消耗 低,主要是磁盘IO资源,但AOF重写时会占用大量CPU和内存资源
使用场景 可以容忍数分钟的数据丢失,追求更快的启动速度 对数据安全性要求较高常见

四、Redis优化秒杀流程

1、秒杀步骤:

  1. 查询优惠券;
  2. 判断秒杀商品库存;
  3. 查询订单
  4. 校验一人一单;
  5. 减库存;
  6. 创建订单;

2、Redis优化秒杀步骤:

  1. 新增秒杀的优惠券,将优惠券信息保存到Redis中;
  2. 基于Lua脚本,判断秒杀商品库存,一人一单,决定用户是否秒杀成功;
  3. 如果秒杀成功,将优惠券id、用户id、商品id封装到阻塞队列中;
  4. 开启异步任务,不断从阻塞队列中读取信息,实现异步下单功能;

3、秒杀的lua脚本

 4、调用秒杀的lua脚本

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
public Result seckillVoucher(Long voucherId) {
     Long userId = UserHolder.getUser().getId();
     long orderId = redisIdWorker.nextId("order");
     // 1.执行lua脚本
     Long result = stringRedisTemplate.execute(
             SECKILL_SCRIPT,
             Collections.emptyList(),
             voucherId.toString(), userId.toString(), String.valueOf(orderId)
     );
     int r = result.intValue();
     // 2.判断结果是否为0
     if (r != 0) {
         // 2.1.不为0 ,代表没有购买资格
         return Result.fail(r == 1 ? "库存不足" : "不能重复下单");
     }
     // 3.返回订单id
     return Result.ok(orderId);
 }

5、通过线程池,操作阻塞队列

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
// 线程池
private static final ExecutorService SECKILL_ORDER_EXECUTOR = Executors.newSingleThreadExecutor();
 
/**
* 在类初始化完成后执行
*/
@PostConstruct
private void init() {
    SECKILL_ORDER_EXECUTOR.submit(new VoucherOrderHandler());
}
 
// 阻塞队列
private BlockingQueue<VoucherOrder> orderTasks = new ArrayBlockingQueue<>(1024 * 1024);
private class OrderHandler implements Runnable{
 
    @Override
    public void run() {
        while (true){
            try {
                doSomething();
            } catch (Exception e) {
                log.error("处理订单异常", e);
            }
        }
    }
}

五、基于Redis实现共享session登录

基于session实现登录

基于Redis实现共享session登录

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
public class RefreshTokenInterceptor implements HandlerInterceptor {
 
    private StringRedisTemplate stringRedisTemplate;
 
    public RefreshTokenInterceptor(StringRedisTemplate stringRedisTemplate) {
        this.stringRedisTemplate = stringRedisTemplate;
    }
 
    @Override
    public boolean preHandle(HttpServletRequest request, HttpServletResponse response, Object handler) throws Exception {
        // 1、获取请求头中的token
        String token = request.getHeader("authorization");
        if (StrUtil.isBlank(token)) {
            return true;
        }
        // 2、基于TOKEN获取redis中的用户
        String key  = LOGIN_USER_KEY + token;
        Map<Object, Object> userMap = stringRedisTemplate.opsForHash().entries(key);
        // 3、判断用户是否存在
        if (userMap.isEmpty()) {
            return true;
        }
        // 5、将查询到的hash数据转为UserDTO
        UserDTO userDTO = BeanUtil.fillBeanWithMap(userMap, new UserDTO(), false);
        // 6、存在,保存用户信息到 ThreadLocal
        UserHolder.saveUser(userDTO);
        // 7、刷新token有效期
        stringRedisTemplate.expire(key, LOGIN_USER_TTL, TimeUnit.MINUTES);
        // 8、放行
        return true;
    }
 
    @Override
    public void afterCompletion(HttpServletRequest request, HttpServletResponse response, Object handler, Exception ex) throws Exception {
        // 移除用户
        UserHolder.removeUser();
    }
}

 到此这篇关于Redis分布式缓存与秒杀的文章就介绍到这了

分享到:

相关信息

  • redis实现session共享的方法

    引言大厂很多项目都是部署到多台服务器上,这些服务器在各个地区都存在,当我们访问服务时虽然执行的是同一个服务,但是可能是不同服务器运行的;在我学习项目时遇到这样一个登录情...

    2023-11-01

  • 简单聊一聊redis过期时间的问题

    1.多次修改一个redis的String过期键,如何保证他仍然能保留第一次设置时的删除时间 2.修改hash、set、Zset、list的值,会使过期时间重置吗?...

    2023-11-01

系统教程栏目

栏目热门教程

人气教程排行

站长推荐

热门系统下载