时间:2021-03-27来源:www.pcxitongcheng.com作者:电脑系统城
factor类型的创建
1 2 3 4 5 6 7 8 9 |
> credit_rating <- c( "BB" , "AAA" , "AA" , "CCC" , "AA" , "AAA" , "B" , "BB" ) #生成名为credit_rating的字符向量 > credit_factor <- factor(credit_rating) # step 2.将credit_rating转化为因子 > credit_factor [1] BB AAA AA CCC AA AAA B BB Levels: AA AAA B BB CCC > str(credit_rating) #调用str()函数,显示credit_rating结构 chr [1:8] "BB" "AAA" "AA" "CCC" "AA" "AAA" "B" "BB" > str(credit_factor) #调用str()函数,显示credit_factor结构 Factor w/ 5 levels "AA" , "AAA" , "B" ,..: 4 2 1 5 1 2 3 4 |
上述代码中第二个运行后得到了levals,用于显示不同的因子(不重复),上述代码运行一二行
1 2 3 4 5 6 7 8 9 10 11 |
>credit_rating <- c( "BB" , "AAA" , "AA" , "CCC" , "AA" , "AAA" , "B" , "BB" ) > credit_factor <- factor(credit_rating) # step 2.将credit_rating转化为因子 > credit_factor [1] BB AAA AA CCC AA AAA B BB Levels: AA AAA B BB CCC > levels(credit_factor) [1] "AA" "AAA" "B" "BB" "CCC" >levels(credit_factor) <-c( "2A" , "3A" , "1B" , "2B" , "3C" ) > credit_factor [1] 2B 3A 2A 3C 2A 3A 1B 2B Levels: 2A 3A 1B 2B 3C |
1 2 3 4 5 6 |
> summary(credit_rating) Length Class Mode 8 character character > summary(credit_factor) AA AAA B BB CCC 2 2 1 2 1 |
1 2 3 4 5 |
# 使用plot()将credit_factor可视化 plot(credit_factor) #> summary(credit_factor) # AA AAA B BB CCC # 2 2 1 2 1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
>AAA_rank <- sample( seq (1:100), 50, replace = T) > AAA_rank [1] 90 28 63 57 96 41 93 70 76 36 26 1 86 43 47 15 23 70 [19] 63 1 79 100 20 59 17 23 84 96 21 33 32 19 52 58 81 37 [37] 22 58 42 75 41 64 15 58 63 2 1 65 54 35 > # step 1:使用cut()函数为AAA_rank创建4个组 > AAA_factor <- cut (x = AAA_rank , breaks =c(0,25,50,75,100) ) > > AAA_factor [1] (75,100] (25,50] (50,75] (50,75] (75,100] (25,50] (75,100] (50,75] [9] (75,100] (25,50] (25,50] (0,25] (75,100] (25,50] (25,50] (0,25] [17] (0,25] (50,75] (50,75] (0,25] (75,100] (75,100] (0,25] (50,75] [25] (0,25] (0,25] (75,100] (75,100] (0,25] (25,50] (25,50] (0,25] [33] (50,75] (50,75] (75,100] (25,50] (0,25] (50,75] (25,50] (50,75] [41] (25,50] (50,75] (0,25] (50,75] (50,75] (0,25] (0,25] (50,75] [49] (50,75] (25,50] Levels: (0,25] (25,50] (50,75] (75,100] > # step 2:使用levels()按顺序将级别重命名 > levels(AAA_factor) <- c( "low" , "medium" , "high" , "very_high" ) > > # step 3:输出AAA_factor > AAA_factor [1] medium medium very_high high very_high high high [8] high medium medium very_high high medium very_high [15] medium low medium low high medium low [22] medium high very_high very_high very_high medium very_high [29] low low low medium very_high low very_high [36] low very_high low low high medium medium [43] medium low low low low medium medium [50] medium Levels: low medium high very_high > > # step 4:绘制AAA_factor > plot(AAA_factor) > |
(1)-1:删除第一位的元素,-3:删除第三位的元素
(2)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
> credit_factor [1] BB AAA AA CCC AA AAA B BB Levels: AA AAA B BB CCC > # 删除位于`credit_factor`第3和第7位的`A`级债券,不使用`drop=TRUE` > keep_level <- credit_factor[c(-3,-7)] > > # 绘制keep_level > plot(keep_level) > > # 使用相同的数据,删除位于`credit_factor`第3和第7位的`A`级债券,使用`drop=TRUE` > drop_level <-credit_factor[c(-3,-7),drop=TRUE] > > # 绘制drop_level > plot(drop_level) > |
1 2 3 4 5 6 |
>cash=data.frame(company = c( "A" , "A" , "B" ), cash_flow = c(100, 200, 300), year = c(1, 3, 2)) #创建数据框 >str(cash) 'data.frame' : 3 obs. of 3 variables: $ company : Factor w/ 2 levels "A" , "B" : 1 1 2 $ cash_flow: num 100 200 300 $ year : num 1 3 2 |
注意:创建数据框时,R的默认行为是将所有字符转换为因子
那么,如何在创建数据框时,不让r的默认行为执行呢?
采用 stringsAsFactors = FALSE
1 2 3 4 5 6 |
> cash=data.frame(company = c( "A" , "A" , "B" ), cash_flow = c(100, 200, 300), year = c(1, 3, 2),stringsAsFactors=FALSE) #创建数据框 > str(cash) 'data.frame' : 3 obs. of 3 variables: $ company : chr "A" "A" "B" $ cash_flow: num 100 200 300 $ year : num 1 3 2 |
1 2 3 |
# 有序Factor类型 credit_rating <- c( "AAA" , "AA" , "A" , "BBB" , "AA" , "BBB" , "A" ) credit_factor_ordered <- factor(credit_rating, ordered = TRUE, levels = c( "AAA" , "AA" , "A" , "BBB" )) |
1 2 3 4 |
>credit_rating <- c( "BB" , "AAA" , "AA" , "CCC" , "AA" , "AAA" , "B" , "BB" ) > credit_factor <- factor(credit_rating) # step 2.将credit_rating转化为因子 > credit_factor #此时的credit_factor 无序 >ordered(credit_factor, levels = c( "AAA" , "AA" , "A" , "BBB" )) |
1 2 3 4 5 6 7 8 9 |
>credit_factor [1] AAA AA A BBB AA BBB A Levels: BBB < A < AA < AAA >credit_factor[-1] [1] AA A BBB AA BBB A Levels: BBB < A < AA < AAA #可见,AAA还存在 >credit_factor[-1, drop = TRUE] #完全放弃AAA级别 [1] AA A BBB AA BBB A Levels: BBB < A < AA |
以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。如有错误或未考虑完全的地方,望不吝赐教。
2024-07-07
Java框架如何实现非阻塞式编程?2023-03-11
Android Jetpack 组件LiveData源码解析2023-03-11
hbuilderx设置Firefox浏览器安装路径教程 hbuilderx怎么设置Firefox浏览器安装路径?一、AVL树的概念 二、AVL树节点的定义 三、AVL树的插入 四、AVL树的旋转 1.左单旋 2.右单旋 3.左右双旋 4.右左双旋 五、进行验证 六、AVLTree的性能...
2023-03-09